Revised phylogeny from complete mitochondrial genomes of phyllostomid bats resolves subfamilial classification


Abstract:

Classically, molecular phylogenetic trees of Phyllostomidae have been inferred using a combination of a few mitochondrial and nuclear markers. However, there is still uncertainty in the relationships, especially among deep clades within the family. In this study, we provide newly sequenced complete mitochondrial genomes from 26 bat species, including genomes of 23 species reported here for the first time. By carefully analysing these genomes using maximum likelihood and Bayesian methods and different ingroup and outgroup samples, partition schemes and data types, we investigated the robustness and sensitivity of our phylogenetic results. The optimal topologies were those inferred from the complete data matrix of nucleotides, with complex and highly parameterized substitution models and partition schemes. Our results show a statistically robust picture of the evolutionary relationships between phyllostomid subfamilies and clarify hitherto uncertain relationships of Lonchorhininae and Macrotinae.

Año de publicación:

2022

Keywords:

  • Macrotinae
  • mitogenomics
  • phylogenetics
  • Leaf-nosed bats
  • Lonchorhininae
  • PHYLLOSTOMIDAE

Fuente:

googlegoogle
scopusscopus

Tipo de documento:

Article

Estado:

Acceso restringido

Áreas de conocimiento:

  • Filogenética
  • Biología
  • Evolución

Áreas temáticas:

  • Sistemas fisiológicos específicos de los animales