A combinatorial model for q-generalized Stirling and bell numbers
Abstract:
We describe a combinatorial model for the q-analogs of the generalized Stirling numbers in terms of bugs and colonies. Using both algebraic and combinatorial methods, we derive explicit formulas, recursions and generating functions for these q-analogs. We give a weight preserving bijective correspondence between our combinatorial model and rook placements on Ferrer boards. We outline a direct application of our theory to the theory of dual graded graphs developed by Fomin. Lastly we define a natural p, q-analog of these generalized Stirling numbers. © 2008 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France.
Año de publicación:
2008
Keywords:
- Rook numbers
- Q-analog
- Dual graded graphs
- Boson
- Bell
- Stirling
Fuente:
scopus
Tipo de documento:
Conference Object
Estado:
Acceso restringido
Áreas de conocimiento:
- Combinatoria
- Optimización matemática
- Optimización matemática
Áreas temáticas:
- Principios generales de matemáticas