A combinatorial model for q-generalized Stirling and bell numbers


Abstract:

We describe a combinatorial model for the q-analogs of the generalized Stirling numbers in terms of bugs and colonies. Using both algebraic and combinatorial methods, we derive explicit formulas, recursions and generating functions for these q-analogs. We give a weight preserving bijective correspondence between our combinatorial model and rook placements on Ferrer boards. We outline a direct application of our theory to the theory of dual graded graphs developed by Fomin. Lastly we define a natural p, q-analog of these generalized Stirling numbers. © 2008 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France.

Año de publicación:

2008

Keywords:

  • Rook numbers
  • Q-analog
  • Dual graded graphs
  • Boson
  • Bell
  • Stirling

Fuente:

scopusscopus

Tipo de documento:

Conference Object

Estado:

Acceso restringido

Áreas de conocimiento:

  • Combinatoria
  • Optimización matemática
  • Optimización matemática

Áreas temáticas:

  • Principios generales de matemáticas