Road approximation in euclidean and v-disparity space: A comparative study
Abstract:
This paper presents a comparative study between two road approximation techniques-planar surfaces-from stereo vision data. The first approach is carried out in the v-disparity space and is based on a voting scheme, the Hough transform. The second one consists in computing the best fitting plane for the whole 3D road data points, directly in the Euclidean space, by using least squares fitting. The comparative study is initially performed over a set of different synthetic surfaces (e.g., plane, quadratic surface, cubic surface) digitized by a virtual stereo head; then real data obtained with a commercial stereo head are used. The comparative study is intended to be used as a criterion for fining the best technique according to the road geometry. Additionally, it highlights common problems driven from a wrong assumption about the scene's prior knowledge. © Springer-Verlag Berlin Heidelberg 2007.
Año de publicación:
2007
Keywords:
Fuente:

Tipo de documento:
Conference Object
Estado:
Acceso restringido
Áreas de conocimiento:
- Visión por computadora
- Simulación por computadora
- Ciencias de la computación
Áreas temáticas:
- Ciencias de la computación
- Métodos informáticos especiales
- Ciencias Naturales y Matemáticas