Role of dietary polyphenols in adipose tissue browning: A narrative review
Abstract:
Lifestyle modifications such as energy restriction and increased physical activity are highly effective in the management of obesity. However, adherence to these therapeutic approaches is poor. On the other hand, syn-thetic drugs used for obesity control are plagued by adverse effects. Despite these failures, adipose tissue is still an attractive therapeutic target for novel molecules, and thus, the characterisation of new and safer anti-obesity drugs is of significant interest. For this reason, in recent years, phenolic constituents of diverse plants have drawn much attention due to their health-promoting properties, opening new research lines related to brown adipose tissue activation and white adipose tissue (WAT) browning. The goal is to increase energy expenditure levels through thermogenic activity activation by multiple factors, like polyphenols. The suggested mechanisms by which polyphenols can modulate thermogenesis include Nor-epinephrine/Catechol-O-Methyl-Transferase (NE/COMT) inhibition, PPARγ co-activator alpha (PGC-1α)-dependent pathways activation, and mitochondrial biogenesis, among others. Although polyphenols such as quercetin, catechins, chrysin, luteolin, curcumin, res-veratrol, gallic acid, and lignans have shown a positive effect on Non-Shivering Thermogenesis and WAT brown-ing, most of them have only been active in murine models or in vitro systems, and their reproducibility in humans has to be proved. Probably in the future, an approach that includes these compounds as part of the nutritional regimen in conjunction with physical exercise, pharmacological and surgical therapy, would allow modulating a pathophysiological mechanism that is still elusive.
Año de publicación:
2020
Keywords:
- Adipose tissue browning
- Nutraceuticals
- energy expenditure
- obesity
- Thermogenesis
- Polyphenols
Fuente:
Tipo de documento:
Review
Estado:
Acceso restringido
Áreas de conocimiento:
- Nutrición
Áreas temáticas:
- Alimentación y bebidas
- Biología
- Fisiología humana