Rule extraction from radial basis function networks by using support vectors


Abstract:

In this paper, a procedure for rule extraction from radial basis function networks (RBFNs) is proposed. The algorithm is based on the use of a support vector machine (SVM) as a frontier pattern selector. By using geometric methods, centers of the RBF units are combined with support vectors in order to construct regions (ellipsoids or hyper-rectangles) in the input space, which are later translated to if-then rules. Additionally, the support vectors are used to determine overlapping between classes and to refine the rule base. The experimental results indicate that a very high fidelity between RBF network and the extracted set of rules can be achieved with low overlapping between classes.

Año de publicación:

2002

Keywords:

    Fuente:

    scopusscopus

    Tipo de documento:

    Conference Object

    Estado:

    Acceso restringido

    Áreas de conocimiento:

    • Aprendizaje automático
    • Algoritmo

    Áreas temáticas:

    • Métodos informáticos especiales
    • Funcionamiento de bibliotecas y archivos
    • Programación informática, programas, datos, seguridad