SSVEP-EEG signal classification based on emotiv EPOC BCI and raspberry pi
Abstract:
This work presents the experimental design for recording Electroencephalography (EEG) signals in 20 test subjects submitted to Steady-state visually evoked potential (SSVEP). The stimuli were performed with frequencies of 7, 9, 11 and 13 Hz. Furthermore, the implementation of a classification system based on SSVEP-EEG signals from the occipital region of the brain obtained with the Emotiv EPOC device is presented. These data were used to train algorithms based on artificial intelligence in a Raspberry Pi 4 Model B. Finally, this work demonstrates the possibility of classifying with times of up to 1.8 ms in embedded systems with low computational capacity.
Año de publicación:
2021
Keywords:
- Brain computer interface
- Data acquisition
- classification
- Machine learning
- XGBoost
- SSVEP-EEG
Fuente:
scopus
Tipo de documento:
Conference Object
Estado:
Acceso abierto
Áreas de conocimiento:
- Ciencias de la computación
Áreas temáticas:
- Física aplicada
- Funcionamiento de bibliotecas y archivos
- Ciencias de la computación