Sand as a relevant fraction in geochemical studies in intertidal environments
Abstract:
Soil and sediment samples from several intertidal environment exposed to different types of contamination were studied to investigate the importance of grain size in relation to the capacity of the substrates to retain trace metals. The unfractionated samples (referred to as bulk samples) were separated into the following grain/size fractions: fine-coarse sand (2-0.100 mm), very fine sand (0.100-0.050 mm), silt (0.050-0.002 mm), and clay (0.002 mm). The sample into its fractions was carried out was in a glove box under high-purity N 2 atmosphere in order to minimize any alterations to the samples. The bulk samples were characterized in terms of physicochemical properties such as pH, redox potential, and grain size. The total organic carbon (TOC), total sulfur (S), iron (Fe) pyrite, Fe, and manganese (Mn), and trace metals lead (Pb), mercury (Hg), chromium (Cr), and nickel (Ni) were analyzed in the bulk samples and in each fraction. The sand fractions were also examined by scanning electron microscopy (SEM). Comparisons of the above parameters were made between fractions and between each fraction and the corresponding bulk sample. The fine-coarse sand fraction contained high levels of the primary elements of the geochemical processes that occur in marine sedimentary environments such as TOC, total Fe, Mn, and S. The net concentrations of these four elements were higher in the fine-coarse sand fraction than in the very fine sand fraction and were similar to the net concentrations in the silt and clay fractions. Detailed SEM analysis of the sand coarse fraction revealed the presence of Fe and aluminum oxyhydroxide coatings in the oxic layers, whereas the framboidal pyrites and coatings observed in the anoxic layers were Fe sulfides. The presence of the various coatings explains why the trace metal concentrations in the sand fine-coarse fraction were similar to those in the clay fraction and higher than those in the very fine sand fraction. The present results highlight the importance of the sand fraction, which is generally disregarded in geochemical and environmental studies of sedimentary layers. © 2013 Springer Science+Business Media Dordrecht.
Año de publicación:
2013
Keywords:
- Sediments
- Grain size effect
- soil
- Sand fraction
- Trace metal
Fuente:
Tipo de documento:
Article
Estado:
Acceso restringido
Áreas de conocimiento:
- Geoquímica
- Química ambiental
Áreas temáticas:
- Ciencias de la tierra
- Geología, hidrología, meteorología