Sandwich theorem for reciprocally strongly convex functions
Abstract:
We introduce the notion of reciprocally strongly convex functions and we present some examples and properties of them. We also prove that two real functions f and g, defined on a real interval (Formula Presented). iff there exists a reciprocally strongly convex function h : [a, b] → R such that f (x) ≤ h (x) ≤ g (x) for all x ∈ [a, b]. Finally, we obtain an approximate convexity result for reciprocally strongly convex functions; namely we prove a stability result of Hyers-Ulam type for this class of functions.
Año de publicación:
2018
Keywords:
- Sandwich theorem
- Hyers-Ulam
- Convex functions
Fuente:


Tipo de documento:
Article
Estado:
Acceso abierto
Áreas de conocimiento:
- Optimización matemática
- Optimización matemática
- Optimización matemática
Áreas temáticas:
- Principios generales de matemáticas