Satellite-augmented diffuse solar radiation separation models


Abstract:

Separation models pbkp_redict diffuse horizontal irradiance from other meteorological parameters such as the global horizontal irradiance or zenith angle. From a mathematical point of view, the separation modeling problem is a regression, where the regressors are observed or computed variables and the regressand is the unobserved diffuse fraction. The most successful minute-resolution separation model prior to 2016 was proposed by Engerer, which is constructed using a trend component (cloud enhancement) and a main effect (logistic function). Subsequently, the Starke model published in 2018 further improved the Engerer model. It is herein shown that the logistic-function type of model, and many other separation models, can be transformed into a (condition-based) multiple linear regression problem. Under this transformation framework, two new models are proposed, which strictly dominate the performance of the Engerer model and the Starke model, at all 7 test sites across the continental United States, making them probably the most accurate separation models to date. The new models are also tested at 5 European sites with unseen data (i.e., not involved during model parameter fitting); their performance again dominates all benchmarking models. The new separation models leverage half-hourly satellite-derived diffuse fraction. Since satellite data are available globally, the satellite-augmented separation models have universal applicability. However, despite their good performance, empirical separation models suffer from a series of issues. Hence, models driven by atmospheric physics are the "true gems" that one should pursue.

Año de publicación:

2019

Keywords:

    Fuente:

    scopusscopus

    Tipo de documento:

    Article

    Estado:

    Acceso restringido

    Áreas de conocimiento:

    • Fotovoltaica
    • Energía
    • Sensores remotos

    Áreas temáticas:

    • Otras ramas de la ingeniería
    • Física aplicada
    • Geología, hidrología, meteorología

    Contribuidores: