Scalable modeling and solution of stochastic multiobjective optimization problems
Abstract:
We present a scalable computing framework for the solution stochastic multiobjective optimization problems. The proposed framework uses a nested conditional value-at-risk (nCVaR) metric to find compromise solutions among conflicting random objectives. We prove that the associated nCVaR minimization problem can be cast as a standard stochastic programming problem with expected value (linking) constraints. We also show that these problems can be implemented in a modular and compact manner using PLASMO (a Julia-based structured modeling framework) and can be solved efficiently using PIPS-NLP (a parallel nonlinear solver). We apply the framework to a CHP design study in which we seek to find compromise solutions that trade-off cost, water, and emissions in the face of uncertainty in electricity and water demands.
Año de publicación:
2017
Keywords:
- Optimization
 - large scale
 - CVaR
 - Multiobjective
 - stochastic
 
Fuente:
scopusTipo de documento:
Article
Estado:
Acceso abierto
Áreas de conocimiento:
- Optimización matemática
 - Optimización matemática
 - Optimización matemática
 
Áreas temáticas de Dewey:
- Programación informática, programas, datos, seguridad
 - Análisis numérico
 - Probabilidades y matemática aplicada
 
Objetivos de Desarrollo Sostenible:
- ODS 9: Industria, innovación e infraestructura
 - ODS 12: Producción y consumo responsables
 - ODS 6: Agua limpia y saneamiento