Scalable modeling and solution of stochastic multiobjective optimization problems


Abstract:

We present a scalable computing framework for the solution stochastic multiobjective optimization problems. The proposed framework uses a nested conditional value-at-risk (nCVaR) metric to find compromise solutions among conflicting random objectives. We prove that the associated nCVaR minimization problem can be cast as a standard stochastic programming problem with expected value (linking) constraints. We also show that these problems can be implemented in a modular and compact manner using PLASMO (a Julia-based structured modeling framework) and can be solved efficiently using PIPS-NLP (a parallel nonlinear solver). We apply the framework to a CHP design study in which we seek to find compromise solutions that trade-off cost, water, and emissions in the face of uncertainty in electricity and water demands.

Año de publicación:

2017

Keywords:

  • Optimization
  • large scale
  • CVaR
  • Multiobjective
  • stochastic

Fuente:

scopusscopus

Tipo de documento:

Article

Estado:

Acceso abierto

Áreas de conocimiento:

  • Optimización matemática
  • Optimización matemática
  • Optimización matemática

Áreas temáticas:

  • Programación informática, programas, datos, seguridad
  • Análisis numérico
  • Probabilidades y matemática aplicada