Scaling properties of multifractal functions at an attractor-repeller transition


Abstract:

Multifractal properties of repelling sets generated by hyperbolic maps are studied as a function of a parameter describing a transition to an attracting interval. Critical indices in the scaling behavior of multifractal functions are found when a uniform probability density is assumed. A constant probability is also considered, and the resulting thermodynamiclike functions are investigated close to the critical value of the parameter. © 1990 The American Physical Society.

Año de publicación:

1990

Keywords:

    Fuente:

    scopusscopus

    Tipo de documento:

    Article

    Estado:

    Acceso restringido

    Áreas de conocimiento:

    • Sistema dinámico
    • Optimización matemática

    Áreas temáticas:

    • Análisis