Scaling properties of multifractal functions at an attractor-repeller transition
Abstract:
Multifractal properties of repelling sets generated by hyperbolic maps are studied as a function of a parameter describing a transition to an attracting interval. Critical indices in the scaling behavior of multifractal functions are found when a uniform probability density is assumed. A constant probability is also considered, and the resulting thermodynamiclike functions are investigated close to the critical value of the parameter. © 1990 The American Physical Society.
Año de publicación:
1990
Keywords:
Fuente:

Tipo de documento:
Article
Estado:
Acceso restringido
Áreas de conocimiento:
- Sistema dinámico
- Optimización matemática
Áreas temáticas:
- Análisis