Second-order orthant-based methods with enriched Hessian information for sparse ℓ<inf>1</inf> -optimization
Abstract:
We present a second order algorithm, based on orthantwise directions, for solving optimization problems involving the sparsity enhancing ℓ1-norm. The main idea of our method consists in modifying the descent orthantwise directions by using second order information both of the regular term and (in weak sense) of the ℓ1-norm. The weak second order information behind the ℓ1-term is incorporated via a partial Huber regularization. One of the main features of our algorithm consists in a faster identification of the active set. We also prove that a reduced version of our method is equivalent to a semismooth Newton algorithm applied to the optimality condition, under a specific choice of the algorithm parameters. We present several computational experiments to show the efficiency of our approach compared to other state-of-the-art algorithms.
Año de publicación:
2017
Keywords:
- Second-order algorithms
- Orthantwise directions
- Sparse optimization
- semismooth Newton methods
Fuente:

Tipo de documento:
Article
Estado:
Acceso restringido
Áreas de conocimiento:
- Optimización matemática
- Optimización matemática
- Optimización matemática
Áreas temáticas:
- Programación informática, programas, datos, seguridad
- Métodos informáticos especiales
- Funcionamiento de bibliotecas y archivos