Second-order renewal theorem in the finite-means case
Abstract:
Let F be a distribution function (d.f.) on (0, ∞) and let U be the renewal function associated with F. If F has a finite first moment μ, then it is well known that U(t) asymptotically equals t/μ. It is also well known that U(t) - t/μ asymptotically behaves as S(t)/μ, where S denotes the integral of the integrated tail distribution F1 of F. In this paper we discuss the rate of convergence of U(t) - t/μ -S(t)/μ, for a large class of distribution functions. The estimate improves earlier results of Geluk, Teugels, and Embrechts and Omey.
Año de publicación:
2003
Keywords:
- O-regular variation
- Subexponential distributions
- Regular variation
- Renewal function
Fuente:
scopus
Tipo de documento:
Article
Estado:
Acceso restringido
Áreas de conocimiento:
- Probabilidad
- Optimización matemática
Áreas temáticas:
- Principios generales de matemáticas
- Probabilidades y matemática aplicada
- Ciencias de la computación