Second-order renewal theorem in the finite-means case


Abstract:

Let F be a distribution function (d.f.) on (0, ∞) and let U be the renewal function associated with F. If F has a finite first moment μ, then it is well known that U(t) asymptotically equals t/μ. It is also well known that U(t) - t/μ asymptotically behaves as S(t)/μ, where S denotes the integral of the integrated tail distribution F1 of F. In this paper we discuss the rate of convergence of U(t) - t/μ -S(t)/μ, for a large class of distribution functions. The estimate improves earlier results of Geluk, Teugels, and Embrechts and Omey.

Año de publicación:

2003

Keywords:

  • O-regular variation
  • Subexponential distributions
  • Regular variation
  • Renewal function

Fuente:

scopusscopus

Tipo de documento:

Article

Estado:

Acceso restringido

Áreas de conocimiento:

  • Probabilidad
  • Optimización matemática

Áreas temáticas:

  • Principios generales de matemáticas
  • Probabilidades y matemática aplicada
  • Ciencias de la computación