Second-order subexponential sequences and the asymptotic behavior of their de pril transform


Abstract:

Suppose that {f(w), n ∈ N0} is a sequence of positive real numbers and suppose that the sequence (a(n), n ∈ N0} is given by a(0) = 0, and, for n ≥ 1, by the convolution equation nf(n) = a * f(n). The resulting sequence is denoted by a(n) = φf(n) and is called the De Pril transform of {f(n), n ∈ N0}. In this paper, we consider first- and second-order asymptotic behavior of {φf(n), n ∈ N0} for a large class of subexponential sequences {φf(n), n ∈ N0}. We also discuss some applications. © 2001 Plenum Publishing Corporation.

Año de publicación:

2001

Keywords:

  • O-regular variation
  • Random walk
  • Subexponential sequences
  • De Pril transform
  • Harmonic renewal sequence

Fuente:

scopusscopus

Tipo de documento:

Article

Estado:

Acceso restringido

Áreas de conocimiento:

  • Análisis asintótico
  • Optimización matemática
  • Optimización matemática

Áreas temáticas:

  • Análisis
  • Principios generales de matemáticas
  • Álgebra