Segmenting retinal vascular net from retinopathy of prematurity images using convolutional neural network


Abstract:

In this paper, we describe the experimentation with a convolutional neural network for segmenting retinal net from pathological fundus images of preterm born children. Segmenting retinal net from pathological fundus images is a fundamental task to aid computer diagnosis. We used U-net architecture for training and testing. Testing with ROPFI dataset, we obtained an area under the receiver operating curve equal to 0.9180; when average sensitivity is equal to 0.700, the average specificity is equal to 0.9710. This performance is higher than prior works using a similar dataset.

Año de publicación:

2019

Keywords:

  • Convolutional neural network
  • medical image processing
  • Retinopathy of Prematurity

Fuente:

scopusscopus

Tipo de documento:

Conference Object

Estado:

Acceso restringido

Áreas de conocimiento:

  • Visión por computadora

Áreas temáticas:

  • Métodos informáticos especiales
  • Funcionamiento de bibliotecas y archivos
  • Medicina y salud