Segmenting retinal vascular net from retinopathy of prematurity images using convolutional neural network
Abstract:
In this paper, we describe the experimentation with a convolutional neural network for segmenting retinal net from pathological fundus images of preterm born children. Segmenting retinal net from pathological fundus images is a fundamental task to aid computer diagnosis. We used U-net architecture for training and testing. Testing with ROPFI dataset, we obtained an area under the receiver operating curve equal to 0.9180; when average sensitivity is equal to 0.700, the average specificity is equal to 0.9710. This performance is higher than prior works using a similar dataset.
Año de publicación:
2019
Keywords:
- Convolutional neural network
- medical image processing
- Retinopathy of Prematurity
Fuente:

Tipo de documento:
Conference Object
Estado:
Acceso restringido
Áreas de conocimiento:
- Visión por computadora
Áreas temáticas:
- Métodos informáticos especiales
- Funcionamiento de bibliotecas y archivos
- Medicina y salud