Selection, drift, recombination, and mutation in multiobjective evolutionary algorithms on scalable MNK-landscapes


Abstract:

This work focuses on the working principles, behavior, and performance of state of the art multiobjective evolutionary algorithms (MOEAs) on discrete search spaces by using MNK-Landscapes. Its motivation comes from the performance shown by NSGA-II and SPEA2 on epistatic problems, which suggest that simpler population-based multiobjective random one-bit climbers are by far superior. Adaptive evolution is a search process driven by selection, drift, mutation, and recombination over fitness landscapes. We group MOEAs features and organize our study around these four important and intertwined processes in order to understand better their effects and clarify the reasons to the poor performance shown by NSGA-II and SPEA2. This work also constitutes a valuable guide for the practitioner on how to set up its algorithm and gives useful insights on how to design more robust and efficient MOEAs. © Springer-Verlag Berlin Heidelberg 2005.

Año de publicación:

2005

Keywords:

    Fuente:

    scopusscopus

    Tipo de documento:

    Conference Object

    Estado:

    Acceso restringido

    Áreas de conocimiento:

    • Evolución
    • Algoritmo
    • Evolución

    Áreas temáticas de Dewey:

    • Ciencias de la computación
    Procesado con IAProcesado con IA

    Objetivos de Desarrollo Sostenible:

    • ODS 9: Industria, innovación e infraestructura
    • ODS 17: Alianzas para lograr los objetivos
    • ODS 4: Educación de calidad
    Procesado con IAProcesado con IA