Selective style transfer for text


Abstract:

This paper explores the possibilities of image style transfer applied to text maintaining the original transcriptions. Results on different text domains (scene text, machine printed text and handwritten text) and cross-modal results demonstrate that this is feasible, and open different research lines. Furthermore, two architectures for selective style transfer, which means transferring style to only desired image pixels, are proposed. Finally, scene text selective style transfer is evaluated as a data augmentation technique to expand scene text detection datasets, resulting in a boost of text detectors performance. Our implementation of the described models is publicly available.

Año de publicación:

2019

Keywords:

  • Text style transfer
  • data augmentation
  • Style transfer
  • Scene text detection

Fuente:

scopusscopus

Tipo de documento:

Conference Object

Estado:

Acceso restringido

Áreas de conocimiento:

  • Inteligencia artificial

Áreas temáticas:

  • Ciencias de la computación