Self-controlling dominance area of solutions in evolutionary many-objective optimization
Abstract:
Controlling dominance area of solutions (CDAS) relaxes the concepts of Pareto dominance with an user-defined parameter S. This method enhances the search performance of dominance-based MOEA in many-objective optimization problems (MaOPs). However, to bring out desirable search performance, we have to experimentally find out S that controls dominance area appropriately. Also, there is a tendency to deteriorate the diversity of solutions obtained by CDAS when we decrease S from 0.5. To solve these problems, in this work, we propose a modification of CDAS called self-controlling dominance area of solutions (S-CDAS). In S-CDAS, the algorithm self-controls dominance area for each solution without the need of an external parameter. S-CDAS considers convergence and diversity and realizes a fine grained ranking that is different from conventional CDAS. In this work, we use many-objective 0/1 knapsack problems with m = 4∼10 objectives to verify the search performance of the proposed method. Simulation results show that S-CDAS achieves well-balanced search performance on both convergence and diversity compared to conventional NSGA-II, CDAS, IBEAε+ and MSOPS. © 2010 Springer-Verlag.
Año de publicación:
2010
Keywords:
Fuente:
Tipo de documento:
Conference Object
Estado:
Acceso restringido
Áreas de conocimiento:
- Optimización matemática
- Evolución
- Optimización matemática
Áreas temáticas:
- Programación informática, programas, datos, seguridad