A comparative study of black-box models for cement fineness prediction using SCADA measurements of a closed circuit grinding


Abstract:

This paper presents a comparative study of three different modeling techniques for predicting cement fineness using input-output SCADA measurements of the closed circuit grinding in a cement plant. The modeling approaches used are the following: statistical, artificial neural networks (ANN), and adaptive neuro-fuzzy inference system (ANFIS). The data set for generating the predictive models are obtained from a database of the operation of the cement plant, UCEM-Guapan located in Azogues, Ecuador. Online validations of the proposed models allow the selection of the best approach and the most accurate models for cement fineness prediction, Blaine and percentage passing the sieve No. 325.

Año de publicación:

2016

Keywords:

  • Fineness Of Cement
  • black-box model
  • pbkp_rediction

Fuente:

rraaerraae

Tipo de documento:

Article

Estado:

Acceso abierto

Áreas de conocimiento:

  • Ingeniería de manufactura
  • Aprendizaje automático

Áreas temáticas de Dewey:

  • Física aplicada
  • Métodos informáticos especiales
Procesado con IAProcesado con IA

Objetivos de Desarrollo Sostenible:

  • ODS 9: Industria, innovación e infraestructura
  • ODS 12: Producción y consumo responsables
  • ODS 17: Alianzas para lograr los objetivos
Procesado con IAProcesado con IA