A comparative study of black-box models for cement fineness pbkp_rediction using SCADA measurements of a closed circuit grinding
Abstract:
This paper presents a comparative study of three different modeling techniques for pbkp_redicting cement fineness using input-output SCADA measurements of the closed circuit grinding in a cement plant. The modeling approaches used are the following: statistical, artificial neural networks (ANN), and adaptive neuro-fuzzy inference system (ANFIS). The data set for generating the pbkp_redictive models are obtained from a database of the operation of the cement plant, UCEM-Guapan located in Azogues, Ecuador. Online validations of the proposed models allow the selection of the best approach and the most accurate models for cement fineness pbkp_rediction, Blaine and percentage passing the sieve No. 325.
Año de publicación:
2016
Keywords:
- Fineness Of Cement
- black-box model
- pbkp_rediction
Fuente:

Tipo de documento:
Article
Estado:
Acceso abierto
Áreas de conocimiento:
- Ingeniería de manufactura
- Aprendizaje automático
Áreas temáticas:
- Física aplicada
- Métodos informáticos especiales