Shift-plethystic trees and Rogers–Ramanujan identities
Abstract:
By studying non-commutative series in an infinite alphabet, we introduce shift-plethystic trees and a class of integer compositions as new combinatorial models for the Rogers–Ramanujan identities. We prove that the language associated to shift-plethystic trees can be expressed as a non-commutative generalization of the Rogers–Ramanujan continued fraction. By specializing the non-commutative series to q-series, we obtain new combinatorial interpretations of the Rogers-Ramanujan identities in terms of signed integer compositions. We introduce the operation of shift-plethysm on non-commutative series and use this to obtain interesting enumerative identities involving compositions and partitions related to Rogers–Ramanujan identities.
Año de publicación:
2021
Keywords:
- Non-commutative series
- Integer compositions
- Rogers–Ramanujan identities
Fuente:

Tipo de documento:
Article
Estado:
Acceso restringido
Áreas de conocimiento:
Áreas temáticas:
- Álgebra