Sign Language Recognition Based on Intelligent Glove Using Machine Learning Techniques


Abstract:

We present an intelligent electronic glove system able to detect numbers of sign language in order to automate the process of communication between a deaf-mute person and others. This is done by translating the hands move sign language into an oral language. The system is inside to a glove with flex sensors in each finger that we are used to collect data that are analyzed through a methodology involving the following stages: (i) Data balancing with the Kennard-Stone (KS), (ii) Comparison of prototypes selection between CHC evolutionary Algorithm and Decremental Reduction Optimization Procedure 3 (DROP3) to define the best one. Subsequently, the K-Nearest Neighbors (kNN) as classifier (iii) is implemented. As a result, the amount of data reduced from stage (i) from storage within the system is 98%. Also, a classification performance of 85% is achieved with CHC evolutionary algorithm.

Año de publicación:

2018

Keywords:

  • Sign Language
  • Knn
  • prototype selection
  • intelligent glove

Fuente:

scopusscopus

Tipo de documento:

Conference Object

Estado:

Acceso restringido

Áreas de conocimiento:

  • Aprendizaje automático
  • Ciencias de la computación

Áreas temáticas:

  • Ciencias de la computación
  • Procesos mentales conscientes e inteligencia
  • Física aplicada