Sign Language Recognition Based on Intelligent Glove Using Machine Learning Techniques
Abstract:
We present an intelligent electronic glove system able to detect numbers of sign language in order to automate the process of communication between a deaf-mute person and others. This is done by translating the hands move sign language into an oral language. The system is inside to a glove with flex sensors in each finger that we are used to collect data that are analyzed through a methodology involving the following stages: (i) Data balancing with the Kennard-Stone (KS), (ii) Comparison of prototypes selection between CHC evolutionary Algorithm and Decremental Reduction Optimization Procedure 3 (DROP3) to define the best one. Subsequently, the K-Nearest Neighbors (kNN) as classifier (iii) is implemented. As a result, the amount of data reduced from stage (i) from storage within the system is 98%. Also, a classification performance of 85% is achieved with CHC evolutionary algorithm.
Año de publicación:
2018
Keywords:
- Sign Language
- Knn
- prototype selection
- intelligent glove
Fuente:

Tipo de documento:
Conference Object
Estado:
Acceso restringido
Áreas de conocimiento:
- Aprendizaje automático
- Ciencias de la computación
Áreas temáticas:
- Ciencias de la computación
- Procesos mentales conscientes e inteligencia
- Física aplicada