Signature recognition: Establishing human baseline performance via crowdsourcing


Abstract:

This work explores crowdsourcing for the establishment of human baseline performance on signature recognition. We present five experiments according to three different scenarios in which laymen, people without Forensic Document Examiner experience, have to decide about the authenticity of a given signature. The scenarios include single comparisons between one genuine sample and one unlabeled sample based on image, video or time sequences and comparisons with multiple training and test sets. The human performance obtained varies from 7% to 80% depending of the scenario and the results suggest the large potential of these collaborative platforms and encourage to further research on this area.

Año de publicación:

2016

Keywords:

  • Biometrics
  • crowdsourcing
  • Worker
  • Signature recognition
  • Mechanical Turk

Fuente:

scopusscopus

Tipo de documento:

Conference Object

Estado:

Acceso restringido

Áreas de conocimiento:

  • Aprendizaje automático
  • Ciencias de la computación

Áreas temáticas:

  • Funcionamiento de bibliotecas y archivos
  • Ciencias sociales
  • Dirección general