Simultaneous electrochemical generation of ferrate and oxygen radicals to blue BR dye degradation


Abstract:

In this study, electro-oxidation (EOx) and in situ generation of ferrate ions [Fe(VI)] were tested to treat water contaminated with Blue BR dye (BBR) using a boron-doped diamond (BDD) anode. Two electrolytic media (0.1 M HClO4 and 0.05 M Na2SO4) were evaluated for the BDD, which simultaneously produced oxygen radicals (fflOH) and [Fe(VI)]. The generation of [Fe(VI)] was characterized by cyclic voltammetry (CV) and the effect of different current intensity values (e.g., 7 mA cm-2, 15 mA cm-2, and 30 mA cm-2) was assessed during BBR degradation tests. The discoloration of BBR was followed by UV-Vis spectrophotometry. When the EOx process was used alone, only 78% BBR discoloration was achieved. The best electrochemical discoloration conditions were found using 0.05 M Na2SO4 and 30 mA cm-2. Using these conditions, overall BBR discoloration values up to 98%, 95%, and 87% with 12 mM, 6 mM, and 1 mM of FeSO4, respectively, were achieved. In the case of chemical oxygen demand (COD) reduction, the EOx process showed only a 37% COD reduction, whereas combining [Fe(VI)] generation using 12 mM of FeSO4 achieved an up to 61% COD reduction after 90 min. The evolution of reaction byproducts (oxalic acid) was performed using liquid chromatography analysis.

Año de publicación:

2020

Keywords:

  • BBR dye
  • Ferrate ion
  • Electro-oxidation
  • Advace oxitadion processes (AOP)

Fuente:

scopusscopus

Tipo de documento:

Article

Estado:

Acceso abierto

Áreas de conocimiento:

  • Electroquímica
  • Ingeniería ambiental
  • Ciencia ambiental

Áreas temáticas:

  • Química física