Sliding mode-based adaptive learning in dynamical adalines
Abstract:
A sliding mode control strategy is proposed for the synthesis of adaptive learning algorithms in perceptron-based feedforward neural networks whose weights are constituted by first order, time-varying, dynamical systems with adjustable parameters. The approach is shown to exhibit remarkable robustness and fast convergence properties. A simulation example, dealing with an analog signal tracking task, is provided which illustrates the feasibility of the approach.
Año de publicación:
1997
Keywords:
Fuente:
scopus
Tipo de documento:
Conference Object
Estado:
Acceso restringido
Áreas de conocimiento:
- Sistema de control
- Aprendizaje automático
- Teoría de control
Áreas temáticas:
- Ciencias de la computación