Sliding mode-based adaptive learning in dynamical-filter-weights neurons
Abstract:
A sliding mode control strategy is proposed for the synthesis of an adaptive learning algorithm in a neuron whose weights are constituted by first-order dynamical filters with adjustable parameters, which in turn allows the representation of dynamical processes in terms of a set of such neurons. The approach is shown to exhibit robustness characteristics and fast convergence properties. A simulation example, dealing with an analog signal tracking task, is provided which illustrates the feasibility of the approach.
Año de publicación:
2000
Keywords:
Fuente:

Tipo de documento:
Article
Estado:
Acceso restringido
Áreas de conocimiento:
- Aprendizaje automático
- Sistema de control
Áreas temáticas:
- Métodos informáticos especiales