Slip distribution of the February 27, 2010 Mw = 8.8 Maule Earthquake, central Chile, from static and high-rate GPS, InSAR, and broadband teleseismic data
Abstract:
The shallow depth underthrust earthquake of February 27, 2010 (Mw 8.8) ruptured the subduction plate interface in central Chile between 34S and 38S. We retrieve the spatial and temporal distribution of slip during this mega-earthquake through a joint inversion of teleseismic records, InSAR and High Rate GPS (HRGPS) data. Additionally, our model is shown to agree with broadband surface waves. Rupture initiated at about 32 km depth and propagated bilaterally resulting in two main slip zones located SSW and NNE of the hypocenter. Nucleation did not take place within or at the edge of one of these main asperities, but in between. During the first 30s, slip propagated predominantly southwards. Later on, the rupture evolved more slowly and more symmetrically. Eventually, the northern asperity became predominant with maximum slip reaching about 20 m. Most of the seismic moment was released within 110s, a relatively short time, explained by the bilateral propagation. The overall average rupture velocity is 2.6 km/s but propagation occurred initially faster towards the south (3.2 km/s). Large slip did not reach the trench, a result consistent with the moderate size of the tsunami. Down-dip, rupture stopped at about 50 km depth, in agreement with the lower limit of the locked zone inferred by Ruegg et al. (2009) from pre-seismic GPS data. © 2010 by the American Geophysical Union.
Año de publicación:
2010
Keywords:
Fuente:
Tipo de documento:
Article
Estado:
Acceso restringido
Áreas de conocimiento:
- Sismología
- Sismología
Áreas temáticas:
- Geología, hidrología, meteorología