Small-scale hybrid photovoltaic-biomass systems feasibility analysis for higher education buildings


Abstract:

Applications of renewable electricity in cities are mostly limited to photovoltaics, and they need other renewable sources, batteries, and the grid to guarantee reliability. This paper proposes a hybrid system, combining biomass and photovoltaics, to supply electricity to educational buildings. This system is reliable and provides at least 50% of electricity based on renewable sources. Buildings with small (< 500 kW) installed power based on renewables, mainly biomass, are usually expensive. Besides, in urban areas, photovoltaic capacity is limited due to roof availability. This paper analyzes different configurations, meeting these constraints to obtain an economically feasible solution based on photovoltaic-biomass modelling of small size hybrid systems. The technology used for biomass energy valorization is a fluidized bed gasification power plant, which has been modelled with real data obtained from experimental tests and previous research projects. Thereby, real costs and electric efficiency are included in the model. The techno-economic feasibility analysis using HOMER software with metered real load curves from an educational building has been modelled. The results of the model show that hybrid renewable systems are very feasible in the scenario of 50% of electricity contribution, however, higher contribution (>70%) implies high electricity costs.

Año de publicación:

2020

Keywords:

  • Higher education buildings
  • hybrid systems
  • Renewables systems

Fuente:

scopusscopus

Tipo de documento:

Article

Estado:

Acceso abierto

Áreas de conocimiento:

  • Energía renovable
  • Energía renovable
  • Energía renovable

Áreas temáticas:

  • Física aplicada
  • Economía de la tierra y la energía