Solution of the Initial Value Problem for a Linear Evolution Equation in a Clifford Type Algebra


Abstract:

Initial value problems of type$$\partial_t{u} = L(t, x, u, \partial_{{x}_i}u), $$∂tu=L(t,x,u,∂xiu),$$u(0, x) = \varphi(x), $$u(0,x)=φ(x),where t is the time, L is a linear first order operator in a Clifford Analysis and φ is a generalized metamonogenic function, can be solved by applying the method of associated spaces which is constructed by W.Tutschke (Teubner Leipzig and Springer-Verlag 1989). The present paper formulates sufficient conditions on the coefficients of operator L under which L is associated to differential equations with anti-monogenic right-hand sides. We shall exhibit an interior estimate for the generalized metamonogenic functions using the Cauchy integral formula and then give out conditions under which this initial value problem (0.1), (0.2) is uniquely solvable in the context of Clifford type algebras.

Año de publicación:

2015

Keywords:

  • metamonogenic operator
  • Initial value problem
  • Interior estimate
  • Associated space

Fuente:

scopusscopus
googlegoogle

Tipo de documento:

Article

Estado:

Acceso restringido

Áreas de conocimiento:

  • Modelo matemático
  • Optimización matemática

Áreas temáticas:

  • Álgebra
  • Análisis
  • Geometría