Solutions of boundary value problems by fixed point methods in clifford analysis
Abstract:
Boundary value problems for elliptic equations of type Lu = F in higher dimensions, can be reduced to fixed-point problems for a suitable defined operator. This defined operator involves a fundamental solution of the equation Lu = 0. We consider the case when the right-hand side depends also on the function u itself and on its derivatives ∂j u for j = 1, . . ., n. As L, we consider operators in the framework of Clifford analysis as the generalized Cauchy-Riemann operator in Rn+1 . To solve the equivalent fixed-point problem, we apply the Contraction Mapping Principle and Schauder type estimates.
Año de publicación:
2021
Keywords:
- Fixed-point Theorems
- Clifford algebras
- Fundamental solutions
- Boundary value problems
Fuente:

Tipo de documento:
Article
Estado:
Acceso restringido
Áreas de conocimiento:
- Optimización matemática
- Optimización matemática
- Optimización matemática
Áreas temáticas:
- Análisis