Some Parameterized Quantum Simpson's and Quantum Newton's Integral Inequalities via Quantum Differentiable Convex Mappings
Abstract:
In this work, two generalized quantum integral identities are proved by using some parameters. By utilizing these equalities, we present several parameterized quantum inequalities for convex mappings. These quantum inequalities generalize many of the important inequalities that exist in the literature, such as quantum trapezoid inequalities, quantum Simpson's inequalities, and quantum Newton's inequalities. We also give some new midpoint-type inequalities as special cases. The results in this work naturally generalize the results for the Riemann integral.
Año de publicación:
2021
Keywords:
Fuente:
google
scopus
Tipo de documento:
Article
Estado:
Acceso abierto
Áreas de conocimiento:
- Optimización matemática
- Mecánica cuántica
Áreas temáticas:
- Principios generales de matemáticas
- Álgebra
- Análisis