Some properties related to the cantor-bendixson derivative on a polish space


Abstract:

We show a necessary and sufficient condition for any ordinal number to be a Polish space. We also prove that for each countable Polish space, there exists a countable ordinal number that is an upper bound for the first compo- nent of the Cantor-Bendixson characteristic of every compact countable subset of the aforementioned space. In addition, for any uncountable Polish space, for every countable ordinal number and for each nonzero natural number, we show the existence of a compact countable subset of this space such that its Cantor-Bendixson characteristic equals the previous pair of numbers. Finally, for every Polish space, we determine the cardinality of the partition, up to homeomorphisms, of the set of all compact countable subsets of the aforesaid space.

Año de publicación:

2020

Keywords:

  • cardinality
  • Polish space
  • Cantor-Bendixson's derivative

Fuente:

scopusscopus

Tipo de documento:

Article

Estado:

Acceso restringido

Áreas de conocimiento:

  • Lógica matemática

Áreas temáticas:

  • Topología
  • Principios generales de matemáticas
  • Matemáticas