Spam detection based on a hierarchical self-organizing map
Abstract:
The GHSOM is an artificial neural network that has been widely used for data clustering. The hierarchical architecture of the GHSOM is more flexible than a single SOM since it is adapted to input data, mirroring inherent hierarchical relations among them. The adaptation process of the GHSOM architecture is controlled by two parameters. However, these parameters have to be established in advance and this task is not always easy. In this paper, a new hierarchical self-organizing model that has just one parameter is proposed. The performance of this model has been evaluated by building a spam detector. Experimental results confirm the goodness of this approach. © 2009 Springer Berlin Heidelberg.
Año de publicación:
2009
Keywords:
- Hierarchical self-organization
- Spam detection
- data clustering
Fuente:
scopus
Tipo de documento:
Conference Object
Estado:
Acceso restringido
Áreas de conocimiento:
- Aprendizaje automático
- Ciencias de la computación
- Ciencias de la computación
Áreas temáticas:
- Ciencias de la computación