Spatial prediction using kriging ensemble


Abstract:

It is surprising how a commonly used concept in temporal prediction—combining forecasts, or rather combining predictions—has not really been brought forward in spatial prediction. Analogous to forecasting, where forecasts made using models such as exponential smoothing or neural networks are combined through regressions, the various prediction combination methods are herein transferred to spatial prediction problems. Through a series of empirical studies, the advantage and potential of kriging ensemble, or more generally, spatial-interpolator ensemble, are demonstrated. Both geostatistical and lattice data (solar irradiance) are considered. Although in theory, the improvement in predictive performance is not guaranteed, just like how we cannot guarantee that ensemble improves forecasts, in practice, a validated ensemble performs at least as good as the best component model, just like how the ensembles in forecasting would behave.

Año de publicación:

2018

Keywords:

  • solar irradiance
  • ensemble
  • KRIGING
  • Spatial interpolation

Fuente:

scopusscopus

Tipo de documento:

Article

Estado:

Acceso restringido

Áreas de conocimiento:

  • Análisis de datos

Áreas temáticas de Dewey:

  • Sistemas
Procesado con IAProcesado con IA

Objetivos de Desarrollo Sostenible:

  • ODS 7: Energía asequible y no contaminante
  • ODS 13: Acción por el clima
  • ODS 9: Industria, innovación e infraestructura
Procesado con IAProcesado con IA

Contribuidores: