Stability of the phase motion in race-track microtrons


Abstract:

We model the phase oscillations of electrons in race-track microtrons by means of an area preserving map with a fixed point at the origin, which represents the synchronous trajectory of a reference particle in the beam. We study the nonlinear stability of the origin in terms of the synchronous phase —the phase of the synchronous particle at the injection. We estimate the size and shape of the stability domain around the origin, whose main connected component is enclosed by an invariant curve. We describe the evolution of the stability domain as the synchronous phase varies. We also clarify the role of the stable and unstable invariant curves of some hyperbolic (fixed or periodic) points.

Año de publicación:

2017

Keywords:

  • Invariant curve
  • Stability domain
  • Microtron
  • Hamiltonian approximation
  • Exponentially small phenomena

Fuente:

scopusscopus
googlegoogle

Tipo de documento:

Article

Estado:

Acceso restringido

Áreas de conocimiento:

  • Física de partículas
  • Física

Áreas temáticas:

  • Física aplicada