Stability results for the first eigenvalue of the Laplacian on domains in space forms


Abstract:

We studied the two known works on stability for isoperimetric inequalities of the first eigenvalue of the Laplacian. The earliest work is due to A. Melas who proved the stability of the Faber-Krahn inequality: for a convex domain Ω contained in ℝn with λ close to ̄l, the first eigenvalue of the ball B of the same volume, the domain must be close to the ball B with respect to the Hausdorff distance. Later, Y. Xu studied the stability of the Szegö-Weinberger inequality for convex domains in ℝn and ℍn where ℍn denotes hyperbolic space. Our work consists of extending A. Melas' result to the spaces of constant curvature S2 and ℍ2 and Y. Xu's result to domains contained in the polar cap Bπ/4 in Sn. © 2002 Elsevier Science (USA).

Año de publicación:

2002

Keywords:

  • Stability of eigenvalues
  • Szegö-Weinberger inequality
  • Faber-Krahn inequality
  • Space forms
  • Constant curvature

Fuente:

scopusscopus

Tipo de documento:

Article

Estado:

Acceso abierto

Áreas de conocimiento:

  • Optimización matemática
  • Optimización matemática
  • Optimización matemática

Áreas temáticas:

  • Análisis
  • Geometría

Contribuidores: