Stability, convergence, and accuracy of stabilized finite element methods for the wave equation in mixed form


Abstract:

In this paper we propose two stabilized finite element methods for different functional frameworks of the wave equation in mixed form. These stabilized finite element methods are stable for any pair of interpolation spaces of the unknowns. The variational forms corresponding to different functional settings are treated in a unified manner through the introduction of length scales related to the unknowns. Stability and convergence analysis is performed together with numerical experiments. It is shown that modifying the length scales allows one to mimic at the discrete level the different functional settings of the continuous problem and influence the stability and accuracy of the resulting methods.

Año de publicación:

2014

Keywords:

  • Stabilized finite element methods
  • Wave equation
  • convergence
  • Orthogonal subgrid scales
  • stability
  • accuracy
  • Variational multiscale method

Fuente:

scopusscopus

Tipo de documento:

Article

Estado:

Acceso restringido

Áreas de conocimiento:

  • Optimización matemática
  • Optimización matemática
  • Método de elementos finitos

Áreas temáticas:

  • Ciencias de la computación
  • Educación superior
  • Geometría