A comprehensive laboratory screening of three-step etch-and-rinse adhesives


Abstract:

Objectives: This study evaluated several bonding (microtensile bond strengths [μTBS], nanoleakage [NL], and in situ degree of conversion [ISDC] on dentin) and mechanical properties (ultimate tensile strength [UTS], degree of conversion [DC], water sorption [WS], and solubility [SL] in water) of four three-step etch-and-rinse adhesives in the short term. Methods: A total of 28 molars were used in this study. The dentin surfaces were bonded with the following adhesives: All-Bond 3 (ALB3); Fusion Duralink (FSDL); Optibond FL (OBFL), and Scotchbond Multi-Purpose (SBMP). After each adhesive-system application, composite resin build-ups were added. For bonding tests, specimens were sectioned in order to obtain bonded sticks. The sticks were divided to be tested for μTBS (0.5 mm/min), for NL (n=2), and ISDC (n=2). For NL, they were immersed in 50% silver nitrate and analyzed by scanning election microscopy. For ISDC, the hybrid layer was evaluated by micro-Raman spectroscopy. An hourglass-shaped matrix (UTS) or disk-shaped matrix (WS and SL) was filled with primer and adhesive (1:1 ratio) and light-polymerized. For UTS evaluation, the specimens were tested under tension. For WS and SL, specimens were desiccated and stored in distilled water to evaluate water diffusion kinetics over a 28-day period. The DC of the adhesives was evaluated by Fourier transformed infrared spectroscopy. The data from each test were analyzed by appropriate statistical methods. Results: OBFL resulted in the highest μTBS, lower NL, higher ISDC and DC, and higher UTS than other adhesives (p<0.05), as well as lower WS (similar to ALB3 and FSDL) and SL (similar to ALB3 and SBMP) (p>0.05). ALB3 showed a higher NL and the lowest DC value. FSDL showed the highest NL and SL and the lowest ISDC. SBMP showed the lowest pattern of WS (p<0.05). Conclusion: OBFL showed the best results in all the properties evaluated, and it can be considered the gold standard of the three-step etch-and-rinse adhesive systems.

Año de publicación:

2014

Keywords:

    Fuente:

    scopusscopus

    Tipo de documento:

    Article

    Estado:

    Acceso restringido

    Áreas de conocimiento:

    • Ciencia de materiales
    • Ciencia de materiales

    Áreas temáticas:

    • Tecnología de otros productos orgánicos
    • Química física
    • Ingeniería química