Stem radial growth and water storage responses to heat and drought vary between conifers with differing hydraulic strategies


Abstract:

We investigated stem radial growth and water storage dynamics of 2 conifer species differing in hydraulic carbon strategies, Juniperus monosperma and Pinus edulis, under conditions of ambient, drought (∼45% reduction in precipitation), heat (∼4.8 °C temperature increase), and the combination of drought + heat, in 2013 and 2014. Juniper maintained low growth across all treatments. Overall, the relatively isohydric piñon pine showed significantly greater growth and water storage recharge than the relatively anisohydric juniper across all treatments in the average climate year (2014) but no differences in the regionally dry year (2013). Piñon pine ceased growth at a constant predawn water potential across all treatments and at a less negative water potential threshold than juniper. Heat has a greater negative impact on piñon pines' growth and water storage than drought, whereas juniper was, in contrast, unaffected by heat but strongly impacted by drought. The whole-plant hydraulic carbon strategies, in this case captured using the isohydric/anisohydric concept, translate into alternative growth and water storage strategies under drought and heat conditions.

Año de publicación:

2018

Keywords:

  • increased temperature
  • Pinus edulis
  • Juniperus monosperma
  • LVDT
  • water potential
  • growth

Fuente:

scopusscopus

Tipo de documento:

Article

Estado:

Acceso restringido

Áreas de conocimiento:

  • Ecología
  • Planta
  • Ciencia ambiental

Áreas temáticas:

  • Plantas conocidas por sus características y flores
  • Huertos, frutas, silvicultura
  • Ecología