Stochastic Embedding revisited: A modern interpretation


Abstract:

There is a very extensive literature on various aspects of the central Bias-Variance trade-off in linear system identification. In the 80's and 90's the focus was on bias characterization, model error models and Stochastic Embedding. Recently, there has been a new interest in Bayesian or kernel methods. This paper puts part of this literature into perspective by giving a modern interpretation of the Stochastic Embedding approach.

Año de publicación:

2014

Keywords:

    Fuente:

    scopusscopus

    Tipo de documento:

    Conference Object

    Estado:

    Acceso restringido

    Áreas de conocimiento:

    • Proceso estocástico
    • Aprendizaje automático

    Áreas temáticas:

    • Programación informática, programas, datos, seguridad
    • Métodos informáticos especiales
    • Ciencias de la computación