Stochastic Embedding revisited: A modern interpretation
Abstract:
There is a very extensive literature on various aspects of the central Bias-Variance trade-off in linear system identification. In the 80's and 90's the focus was on bias characterization, model error models and Stochastic Embedding. Recently, there has been a new interest in Bayesian or kernel methods. This paper puts part of this literature into perspective by giving a modern interpretation of the Stochastic Embedding approach.
Año de publicación:
2014
Keywords:
Fuente:

Tipo de documento:
Conference Object
Estado:
Acceso restringido
Áreas de conocimiento:
- Proceso estocástico
- Aprendizaje automático
Áreas temáticas:
- Programación informática, programas, datos, seguridad
- Métodos informáticos especiales
- Ciencias de la computación