Stock Market Data Pbkp_rediction Using Machine Learning Techniques


Abstract:

This paper studies the possibilities of making pbkp_rediction of stock market prices using historical data and machine learning algorithms. We have experimented with stock market data of the Apple Inc. using random trees and multilayer perceptron algorithms to perform the pbkp_redictions of closing prices. An accuracy analysis was also conducted to determine how useful can these types of supervised machine learning algorithms could be in the financial field. These types of studies could also be researched with data from the Ecuadorian stock market exchanges i.e. Bolsa de Valores de Quito (BVQ) and Bolsa de Valores de Guayaquil (BVG) to evaluate the effectiveness of the algorithms in less liquid markets and possibly help reduce inefficiency costs for market participants and stakeholders.

Año de publicación:

2019

Keywords:

  • Machine learning
  • stock market
  • pbkp_rediction
  • Artificial Intelligence

Fuente:

scopusscopus

Tipo de documento:

Conference Object

Estado:

Acceso restringido

Áreas de conocimiento:

  • Finanzas
  • Aprendizaje automático
  • Ciencias de la computación

Áreas temáticas:

  • Economía financiera
  • Métodos informáticos especiales
  • Programación informática, programas, datos, seguridad