Stock Price Analysis with Deep-Learning Models
Abstract:
Novel artificial intelligence prediction algorithms use deep learning techniques, i.e., recurrent neural networks and convolutional neural networks, to predict financial time series. Also, autoencoders have gained notoriety to extract features from latent space data and decode them for predictions. This paper compares several deep learning architectures with different combinations of long short-term memory networks and convolutional neural networks. Autoencoders are implemented within these networks to find the best model performance for financial forecasting tasks. Four different architectures were trained with stock market data of four companies (AMD, ResMed, Nvidia, and Macy's) from 2010 to 2020. Without autoencoder, the long short-term memory network architecture achieved the best performance for all companies, obtaining a mean squared error of 0.004 for AMD stocks by applying 10-fold nested cross-validation. The results show that long short-term memory networks are very well suited for prediction tasks using a simple deep-learning architecture.
Año de publicación:
2021
Keywords:
- Autoencoder
- deep learning
- Time-series
- Conv2D
- pbkp_rediction
- Stocks
- LSTM
Fuente:

Tipo de documento:
Conference Object
Estado:
Acceso restringido
Áreas de conocimiento:
- Finanzas
- Aprendizaje automático
- Ciencias de la computación
Áreas temáticas de Dewey:
- Ciencias de la computación

Objetivos de Desarrollo Sostenible:
- ODS 8: Trabajo decente y crecimiento económico
- ODS 12: Producción y consumo responsables
- ODS 9: Industria, innovación e infraestructura
