Stock management in hospital pharmacy using chance-constrained model predictive control


Abstract:

One of the most important problems in the pharmacy department of a hospital is stock management. The clinical need for drugs must be satisfied with limited work labor while minimizing the use of economic resources. The complexity of the problem resides in the random nature of the drug demand and the multiple constraints that must be taken into account in every decision. In this article, chance-constrained model predictive control is proposed to deal with this problem. The flexibility of model predictive control allows taking into account explicitly the different objectives and constraints involved in the problem while the use of chance constraints provides a trade-off between conservativeness and efficiency. The solution proposed is assessed to study its implementation in two Spanish hospitals.

Año de publicación:

2016

Keywords:

  • Inventory management
  • Chance constraints
  • Stochastic Control
  • Pharmacy Management Stockout Risk
  • Model Pbkp_redictive Control
  • Hospital pharmacy

Fuente:

scopusscopus

Tipo de documento:

Article

Estado:

Acceso restringido

Áreas de conocimiento:

  • Logística
  • Optimización matemática

Áreas temáticas de Dewey:

  • Farmacología y terapéutica
  • Dirección general
  • Medicina y salud
Procesado con IAProcesado con IA

Objetivos de Desarrollo Sostenible:

  • ODS 3: Salud y bienestar
  • ODS 12: Producción y consumo responsables
  • ODS 8: Trabajo decente y crecimiento económico
Procesado con IAProcesado con IA