Strong labelings of linear forests
Abstract:
A (p, q)-graph G is called super edge-magic if there exists a bijective function f: V (G) → E(G) → {1, 2, ..., p+q} such that f(u)+f(υ)+f(uυ) is a constant for each uυ ε E(G) and f(V (G)) = {1, 2, ..., p}. In this paper, we introduce the concept of strong super edge-magic labeling as a particular class of super edge-magic labelings and we use such labelings in order to show that the number of super edge-magic labelings of an odd union of path-like trees (mT), all of them of the same order, grows at least exponentially with m. © The Editorial Office of AMS &Springer-Verlag 2009.
Año de publicación:
2009
Keywords:
- Strong super edge magic labeling
- Linear forest
- Path-like tree
Fuente:
scopus
Tipo de documento:
Article
Estado:
Acceso restringido
Áreas de conocimiento:
- Teoría de grafos
Áreas temáticas:
- Principios generales de matemáticas
- Álgebra
- Ciencias de la computación