Strong labelings of linear forests


Abstract:

A (p, q)-graph G is called super edge-magic if there exists a bijective function f: V (G) → E(G) → {1, 2, ..., p+q} such that f(u)+f(υ)+f(uυ) is a constant for each uυ ε E(G) and f(V (G)) = {1, 2, ..., p}. In this paper, we introduce the concept of strong super edge-magic labeling as a particular class of super edge-magic labelings and we use such labelings in order to show that the number of super edge-magic labelings of an odd union of path-like trees (mT), all of them of the same order, grows at least exponentially with m. © The Editorial Office of AMS &Springer-Verlag 2009.

Año de publicación:

2009

Keywords:

  • Strong super edge magic labeling
  • Linear forest
  • Path-like tree

Fuente:

scopusscopus

Tipo de documento:

Article

Estado:

Acceso restringido

Áreas de conocimiento:

  • Teoría de grafos

Áreas temáticas:

  • Principios generales de matemáticas
  • Álgebra
  • Ciencias de la computación