Structural Raman enhancement in graphite nano-discs


Abstract:

Raman scattering in disc-shaped graphite nanostructures, etched out of bulk HOPG, are investigated using an excitation wavelength of 532 nm at different laser power. The G-band is fitted using two Lorentzian functions, GL and GH. The difference of Raman shift between the two Lorentzian functions increase with laser power as a consequence of selective absorption and heating of the discs. Further, the G-band from the nanostructured HOPG reveal a Raman enhancement (RE) of ∼2.2 and ∼1.5 for the components associated with the discs (GL) and the supporting substrate (GH), respectively. The quantitative agreement between the experimental results and performed finite difference time domain calculations make possible to conclude that electromagnetic energy penetrates considerably into the discs from the circular periphery probably due to multiple scattering. In addition, the dependence of RE of the GL component on the laser power is attributed to a temperature dependent electron-phonon coupling.

Año de publicación:

2016

Keywords:

    Fuente:

    scopusscopus

    Tipo de documento:

    Conference Object

    Estado:

    Acceso restringido

    Áreas de conocimiento:

    • Nanostructura
    • Ciencia de materiales
    • Ciencia de materiales

    Áreas temáticas:

    • Química orgánica
    • Ingeniería y operaciones afines