Structural, mechanical and tribological behavior of TiCN, CrAlN and BCN coatings in lubricated and non-lubricated environments in manufactured devices


Abstract:

This paper presents the structural, mechanical and tribological behaviors for AISI 1045 steel uncoated and coated with Titanium Carbo-nitride (TiCN), Aluminum Chrome Nitride (CrAlN) and Boron Carbo-nitride (BCN) under lubricated and non-lubricated environments. The coating's natural effect on the crystalline structure, chemical composition, as well as the mechanical properties were determined by X-ray diffraction (XRD), X-ray photo-electron spectroscopy (XPS), atomic force microscopy (AFM), scanning electron microscopy (SEM), nanoindentation and tribological characterization techniques. The results show that the material with the lowest elastic modulus was TiCN (224 GPa), followed by CrAlN (235 GPa), and the BCN (251 GPa). The friction coefficient results for the coatings without lubrication were 0.74, 0.66 and 0.60, respectively, and with lubrication were 0.24, 0.23 and 0.21, respectively. These results indicate that the tribological properties are strongly dependent on the lubricated environment's nature and the coating's nature. Advanced surface treatments are increasingly used in the daily manufacture of parts for the metalworking and automotive industry due to high mechanical and tribological requirements; therefore, TiCN, CrAlN and BCN coatings can be used as future materials for elements subject to high stress and wear in lubricated environments.

Año de publicación:

2020

Keywords:

  • TiCN
  • Lubricated environments
  • CrAlN
  • BCN coatings
  • Friction coefficient

Fuente:

scopusscopus

Tipo de documento:

Article

Estado:

Acceso restringido

Áreas de conocimiento:

  • Ciencia de materiales
  • Ciencia de materiales

Áreas temáticas:

  • Metalurgia y productos metálicos primarios
  • Materiales de construcción
  • Ingeniería y operaciones afines