Structure, kinetics, molecular and redox properties of a cytosolic and developmentally regulated fungal catalase-peroxidase
Abstract:
CAT-2, a cytosolic catalase-peroxidase (CP) from Neurospora crassa, which is induced during asexual spore formation, was heterologously expressed and characterized. CAT-2 had the Met-Tyr-Trp (M-Y-W) adduct required for catalase activity. Its KM for H2O2 was micromolar for peroxidase and millimolar for catalase activity. A Em = −158 mV reduction potential value was obtained and the Soret band shift suggested a mixture of low and high spin ferric iron. CAT-2 EPR spectrum at 10 K indicated an axial and a rhombic component. With peroxyacetic acid (PAA), formation of Compound I* was observed with EPR. CAT-2 homodimer crystallographic structure contained two K+ ions; Glu107 residues were displaced to bind them. CAT-2 showed the essential amino acid residues for activity in similar positions to other CPs. CAT-2 Arg426 is oriented towards the M-Y-W adduct, interacting with the deprotonated Tyr238 hydroxyl group. A perhydroxy modification of the indole nitrogen of Trp90 was oriented toward the catalytic His91. In contrast to cytochrome c peroxidase and ascorbate peroxidase, the catalase-peroxidase heme propionates are not exposed to the solvent. Together with other N. crassa enzymes that utilize H2O2 as a substrate, CAT-2 has many tryptophan and proline residues at its surface, probably related to H2O2 selection in water.
Año de publicación:
2018
Keywords:
- Heme-EPR
- Metal-binding
- surface residues with increased residence time for H O 2 2
- Amino-acid radical
- M-Y-W adduct
- kinetics
- Catalase-peroxidase structure
Fuente:
Tipo de documento:
Article
Estado:
Acceso restringido
Áreas de conocimiento:
- Bioquímica
- Bioquímica
- Bioquímica
Áreas temáticas:
- Microorganismos, hongos y algas
- Bioquímica