Super edge-antimagic labelings of the path-like trees
Abstract:
A graph G = (V, E) is (a, d)-edge-antimagic total if there exists a bijective function f : V(G) ∪ E(G) → {1, 2,..., |V(G)| + |E(G)|) such that the edge-weights w(uv) = f(u) + f(v) + f(uv),uv ∈ E(G), form an arithmetic progression with initial term a and common difference d. Such a labeling is called super if the smallest possible labels appear on the vertices. In this paper we study super (a, d)-edge-antimagic properties of paths and path-like trees.
Año de publicación:
2007
Keywords:
Fuente:

Tipo de documento:
Article
Estado:
Acceso restringido
Áreas de conocimiento:
- Teoría de grafos
- Optimización matemática
- Optimización matemática
Áreas temáticas de Dewey:
- Ciencias de la computación

Objetivos de Desarrollo Sostenible:
- ODS 9: Industria, innovación e infraestructura
- ODS 17: Alianzas para lograr los objetivos
- ODS 8: Trabajo decente y crecimiento económico
