Super-vertex-antimagic total labelings of disconnected graphs


Abstract:

Let G = (V, E) be a finite, simple and non-empty (p, q)-graph of order p and size q. An (a, d)-vertex-antimagic total labeling is a bijection f from V (G) ∪ E (G) onto the set of consecutive integers 1, 2, ..., p + q, such that the vertex-weights form an arithmetic progression with the initial term a and the common difference d, where the vertex-weight of x is the sum of values f (x y) assigned to all edges x y incident to vertex x together with the value assigned to x itself, i.e. f (x). Such a labeling is called super if the smallest possible labels appear on the vertices. In this paper, we will study the properties of such labelings and examine their existence for disconnected graphs. © 2009 Elsevier B.V. All rights reserved.

Año de publicación:

2009

Keywords:

  • (a, d)-vertex-antimagic total labeling
  • Disconnected graphs
  • Super-(a, d)-vertex-antimagic total labeling

Fuente:

scopusscopus

Tipo de documento:

Article

Estado:

Acceso abierto

Áreas de conocimiento:

  • Teoría de grafos
  • Optimización matemática

Áreas temáticas:

  • Ciencias de la computación