Support Vector Machines for color adjustment in automotive basecoat
Abstract:
Traditionally, Computer Colorant Formulation has been implemented using a theory of radiation transfer known as the Kubelka-Munk (K-M) theory. In recent studies, Artificial Neural Networks (ANNs) has been put forward for dealing with color formulation problems. This paper investigates the ability of Support Vector Machines (SVMs), a particular machine learning technique, to help color adjustment processing in the automotive industry. Imitating 'color matcher' employees, SVMs based on a standard Gaussian kernel are used in an iterative color matching procedure. Two experiments were carried out to validate our proposal, the first considering objective color measurements as output in the training set, and a second where expert criterion was used to assign the output. The comparison of the two experiments reveals some insights about the complexity of the color adjustment analysis and suggests the viability of the method presented. © 2006 The authors and IOS Press.
Año de publicación:
2006
Keywords:
- Color formulation
- Color adjustment
- Artificial Intelligence
- Decision Support Systems
- Support Vector Machine
Fuente:

Tipo de documento:
Conference Object
Estado:
Acceso restringido
Áreas de conocimiento:
- Aprendizaje automático
- Ciencias de la computación
- Simulación por computadora
Áreas temáticas:
- Ciencias de la computación