Support vector machines framework for linear signal processing
Abstract:
This paper presents a support vector machines (SVM) framework to deal with linear signal processing (LSP) problems. The approach relies on three basic steps for model building: (1) identifying the suitable base of the Hilbert signal space in the model, (2) using a robust cost function, and (3) minimizing a constrained, regularized functional by means of the method of Lagrange multipliers. Recently, autoregressive moving average (ARMA) system identification and non-parametric spectral analysis have been formulated under this framework. The generalized, yet simple, formulation of SVM LSP problems is particularized here for three different issues: parametric spectral estimation, stability of Infinite Impulse Response filters using the gamma structure, and complex ARMA models for communication applications. The good performance shown on these different domains suggests that other signal processing problems can be stated from this SVM framework. © 2005 Elsevier B.V. All rights reserved.
Año de publicación:
2005
Keywords:
- Linear processing
- Complex ARMA
- Spectral estimation
- Gamma filter
- SUPPORT VECTOR MACHINES
Fuente:
Tipo de documento:
Article
Estado:
Acceso restringido
Áreas de conocimiento:
- Aprendizaje automático
- Algoritmo
- Ciencias de la computación
Áreas temáticas:
- Ciencias de la computación